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L-STATISTICS WITH SMOOTH WEIGHT
FUNCTIONS JACKKNIFE WELL

by

William C. Parr and William R. Schucany

—\Tv/ ABSTRACT

The behavior of linear combinations of order statistics (L-statistics)

under jackknifing is discussed. The asymptotic behavior of a jackknifed
L-statistic is produced, and the pseudo-value based variance estimate is

3 shown to be consistent under moderate smoothness and a trimming condition
of the weight function. The results extend easily to functions of L-sta-
tistics and thus answer a question posed in Miller (1974). Monte Carlo
results support small-sample applicability of the large-sample results for

the construction of approximate confidence intervals.
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1. INTRODUCTION, NOTATION, AND DEFINITIONS

Let xl. xz, eeey xn be a random sample of size n from a

- distribution with distribution function F, and let xl o’ Xz a’
] ?

ceey Xn a denote the associated order statistics. For a fixed

weight function J(u) defined for 0 < u < 1, we define the

L-statistic
n
1 i
sn o iilJ [n 1 ]xi.n . (1.1)

Other definitions, typically asymptotically equivalent to that

) R § )
above, include Tn - z J(;Oxi a and Un -2 T ci nx1 n
i-l * 1‘1 LY L}
i/n
where ¢ n" f J(u)du, Sn is chosen for study in this paper
’ (1-1)/n

as being typical of actual L-statistics used in practice (use
of Un’ in which the integration "smooths" J, might result in

fewer conditions on the weight function).

L-statistics of the form of Sn are often used in esti-
mation problems since they are typically computationally simple
and (at least for location and scale problems) asymptotically
efficient given the proper choice of the weight function J.
Thus, they are often good choices a) as estimates for their

own sake, b) as good starting values for iterative estimation




i procedures, and c¢) as quick and consistent estimators of
nuisance parameters (such as unknown scale in regression
problems) to minimize the number of parameters being simultan-

eously estimated via an iterative procedure. Herein we comsider

primarily a), where L-statistics are used to make parametric
inferences on their own. However, Sn is often biased as an
estimator of S = ole(u)J(u)du where Q(u) = inf{x:F(x) > u} ,
as is g(Sn) bilased for g(So) for many choices of g. Also,
there seems to be a dearth of procedures for consistent non-
parametric estimation of the variance of /h(sn-so). (But see Sen
(1979) in this regard.) For both of these problems, reduction
of bias and consistent nonparametric variance estimation, the
jackknife is a natural choice as a possibly non-optimal
rough-and-ready tool.

The ordinary jackknife of Sn may be written as

n
s

S =
1=l i,n

n

- N1

n 1
- Palt) s
1=1 n+1l "i,n

(1.3)
1 ¢ 1 -1 1
-c T [(1 - 1).1[ = ] + (n - 1):(;)] Xy n
| =] ) .
ens -2zl ) ,
n {=1 n-1

L ogtm - - me e g — > e w— ) J




where the ith pseudo-value is

n i
54,0 7 F J[n ¥ l]xj,n T

-1 n
3 - 1-1
T J(n)x I J( }xj’n »

ju1 =1 ¥ P gugy Lo
(1.4)
szi is the same L-statistic computed after deleting X .a
from the sample, and g h(i) 1is understood to be defined to be

i=a
zero if a > b. (See Miller (1974) for basic definitions of

the jackknife and pseudo-values in general.) Note that the
definition of J at 0 and 1 is completely arbitrary since the
associated terms will cancel out in (1.3).

We further define the sample variance of the pseudo-values

as
2 1 s )2
sp "n-1 iil(si,n - sn) . (1.5)

2. RESULTS ON JACKKNIFING L~STATISTICS

Theorem 1: Let xl, xz, cers xn be a random sample of size n

from a distribution F with EFIXIP < » for some %-:_p < 1.
Further, let Sn and gn be as defined by (1.1) and (1.3). 1f
a) p= 1 and J' satisfies a Holder condition with a > %3 or

b) %5, p < 1 and J' satisfies a Holder condition with




1 1 -
a=S=3 then /n('sn - Sn) + 0 with probability 1 as
n+ o,
- n
Proof: From elementary algebra, Su - Sn - 1£1DJ(i’n)xi’“'
where

n-1 i i-1 fi-1) n-1 1
DJ(i’n)- n J[n ]- —_J[‘n | J(E)’

l<i<n .

Since J' obeys a Holder condition with exponent a we have

i i
(with n+1l b1 Einl = n)

i 1 N SR i )
J(;)-J[n+l]+'][n+1][n-n+l)

e O (R |
+ (Einl)-J[n+l}[n n+1]

- i ' i i
J[tl+1].""[n+l] n(n+1)+Binl

1 l4+a
n(n + l)l

1 -1 i
n <";ix:2<u+1)

and (with




Vvalue by some finite positive constant B.

»
1-1) i | 1 (a1 i )
s ) -
' Cqef ot Nt-1 1
IRy =T [n+lj)[ a n+1]
J[n+1]+JLl+1] a(n + 1)
+B i-n-11+°
in2} n(n'+ 1) ’
where the B inl and B {n2 3T all uniformly bounded in absolute

Hence,

' 1
D;(1,n) = -J [n + 1]

/a|s_ -S| < /n
n n -

L - oi + 1 _ a-1 8 [ 1 ]1"1’1
a2(n + 1) n inlin(n + 1)
1-1.. |t-n-1 l+a
n in2 | a(n + 1) *

n
b3 IDJ(i,n)I l-xi’nl

i=1
X, |
1+a n I i
<n sup lD (i’n)l T ————
l<i<n J {1 n.(l+2u)/2
= Zn .
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"2 1+2
If 0 <_T_:-§; <1 and EFIXI ¢ < o, with J' satisfying a

Holder condition with exponent «, Z + 0 with probability

one, by Marcinkiewicz' theorem (Loeve (1977), p.254). 1f

) EFIXI < » and J' satisfies a Holder condition with exponent

a > %3 Zn + 0 with probability one, using the strong law of

large numbers.

Several comments are in order:

1) This result is the univariQCe analogue for L-statistics
of result J.1 of Reeds (1978) for M-estimators. The extension
to the multivariate case is lmmediate and hence omitted.

2) The moment condition on F is seen by an inspection
of the proof to be'supeffluous if S “trims", i.e.,if J(u) = 0
for u € (C,e) U (1 - ¢,1) for some 0 < ¢ <« %-.

3) If further /h(sn - 8,) i, N(0,02), where

o2 = [ [ JIF@E))IEG)) [Fmin(x,y))

- F(x)F(y)]dx dy >0, (2.1)

then /h(gn =5 4, N(0,02) likewise, This is true if the

conditions of Theorem 1 hold with p = 1 and J' is of bounded

PIL7S e ARG - AEPIERY

Vo e e g p— o ——

o I RO s NPT WP




variation (using the result of D. S. Moore (1968), with 02 < =),

4) Since J" bounded on (0,1) implies that J' satisfies
a Holder condition with a = 1, the condifion on J and F in the
theorem may be replaced by the stronger but intuitively clearer
condition that J" is bounded and l:'.l..IXI%'3 < =,

5) A similar theorem was stated under much stronger

conditions by Thorburn (1976).

6) Theorem 1 yields a law of the iterated logarithm for
the jackknife of a linear function of order statistics from the
corresponding law for the original statistics. Using Theorem 4
(Example 1) of Wellner (1977b), we obtain that if EF|X12+t <™

for some £ > 0 (and a > %9

. |
/nISn - 0[ Q(u)Jn(u)du|
1im sup =1 .

/& a2 log log n

i
+1

]for 1-1 <u < i-,
n -

with probability one, where Jn(u) = J[n

1
l<i<n, and J (0) J{n r 1} .
7) Similarly, a Berry-Esseen rate for Sn follows directly
1
from that of Helmers (1977), If E_[X|> <= , [ ]J'(wlaQu) <=
0

and 02 > 0, we quickly obtain that

sup _ IFn*(x) - ¥(x)| = 0(n-¥a)




where Fn*(i) is the cumulative distribution of (5“--E[Sn])/(Va::'Su))ll2

and ¢(+) is the standard normal cumulative.

The following theorem gives conditions under which the
jackknife provides a consistent estimator of the asymptotic

variance of /n(Sn - So) and /h(gn - So), and hence makes

possible the construction of asymptotically pivotal quantities.

Theorem 2: Let Xl, evey Xn be a random sample of size n from

a distribution F, and let sp2 be defined by (1.5). If there
exist positive numbers € and § such that 0 < § < ¢ < %3

(let C(e) = [0,e) U (1 - €, 1)); J(u) =0 for.uec(s),
£Q(u) > B > 0 for u€l(e - 5y, and J'

satisfies a Holder condition with exponent a > 0, then

spz'g*o% with g2 given by (2.1).

Proof: Note that g2 = Var(H(U)) where U ~ u(0,1) and
1
H(u) = Q(u)J(u) - f Q(e)J'(t) [t -~ I(u < t)]dt, translating
0
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the results of Boos (1979, eq.3.3) into the quantile domain and

then integrating by‘parts. Now, from (1.5), it will suffice for

the desired result if we show that

i P
sup |S - H[ — 0 as n -+ o, (2.2)
l:izpl i,n n + ljl ’
) 1 n 1 , 0 2
= - = . + .
If (2.2) holds, then sp — iil(n(n e l] - jila[“ + 1]) op(l)

n n
Furthermore, —=— I H2|—= and & 1 u|l—i—| winn
n-1 =1 n 4e1 0 +1

1 1
converge to f H2(u)du and f H(u)du respectively, giving
0 0

-

)
sp2 — g2, By definition,

-,

g et L




+ R'nZi ?

using Taylor expansions and the H¥lder condition on J'. Also
using trimming condition on J, the remainder term is such that

sup |R ,.| =0 (1) as n + =,
l<i<n n2i P

From the continuity and boundedness of J and the fact

that £Q(u) > B > 0 wherever J(u) ¥ O, J( 1 ]xi,n =

] n + 1

i i

J(u + 1] Q[n + 1) * Baagr Vith 1i:BnIR“3il = 0,(1). Further

) y § 1

- 1 '

n jflJ [n + 1] a+ 1 xj,n e OI Q(t)J'(L)F(t)dt with probability

one from Corollary 2 to Theorem 1 of Wellner (1977).

i
Then, for fixed K let LR

» 1 =0,1, ..., K+ 1.

It follows easily that

n 1
L, -% by J'[—L-]x 2 o
j-[nui] 1

1
= [ IOy < 0Qe)de .
0

P LA AR
. u.‘qﬁ‘y'g-f\&l.
. — - - K
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Since K is finite, the convergence in probability is uniform

ini{, 1 =0, 1, ..., K+ 1. Furthermore, letting inf |u, -y

{=1,...k &

be achieved at index value i*

R .
sup |L,,-= I J'[ ]x |
0<usl ix nj-[nu] n+1l7j,n
oy L@l 150 - 0
< suwp u

which may be made less than any specified positive number in
probability through a sufficiently large choice of K. Hence,
(2.2) holds and s : £, 02, by the uniform continuity of

uf‘J'(:)deg.)

Some pertinent comments follow:

1) This result provides a method for consistent variance
estimation for L-statistics, being the univariate analogue for
L-statistics of result i.2 of Reeds (1978) for M-estimators.

2) Finiteness of 02 is clearly implied by the trimming
and boundedness conditions on J.

3) This result makes possible the construction of
nonparametric approximate confidence intervals for

So = f Q(u)J(u)du, using as pivotal quantities

0
/n (Sn - So) o /n(sn - So) .
s s
P P

o eo—p— e e i
4 — e A—q
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This is, io the knowledge of the authors, the only nonparametric
method of comnsistent variance estimation for L-statistics (i.e.,
in the absence of a specified parametric form for the unknown
density) other than that of Sen (197¢) discussed below. For a
specific parametric family, a consistent estimator would of

course typically be provided by

0 = [ [ J(F5())I(Fy(y)) [F;(min(x,y)

-l =0

(2.3)
- Fa(x)ra(y) ldxdy

ke

where F,, 0 € Q is the parametric family of densities and ©

e’

is a weakiy consistent estimator of 9, possibly multivariata.
4) It would be interesting to compare the properties of

this estimator with that proposed by Semn (1979), which is

essentially

2= [ [ IECIE MIF (xy) = F_(OF () Jaxdy, (2.4)

- =

obtained by subsituting the empirical distribution function

Fh for F in (2.1).

5) Relaxation of the trimming condition on J, which
would require either moment conditions on F or joint conditions

governing J(u) and Q(u) as u approaches 0 and 1 is questionable from

BV 1o O




the standpoint of robust inference and hence Theorem 2 is .

stated as being of interest in its own right. Theorem 3,

however, obtains strong convergence of spz, while dropping the

trimming condition, at the cost of moment assumptions.

Theorem 3: Let Xl, very xn be a random sample of size n from

| ¥

a distribution F with E|X < » for some ¢ > 0. If J'

is continuous on [0,1], then sp2 + g2 with probability one.

Proof: We proceed as in the proof of Theorem 2 to write

=]
+

1 DR I

'
- N

n
' ) I h|
jfl(" (npye) =3 [n ¥ 1]’[:: y1- = i)]xj,n '

1-1 1 I
where a 5-nnji 2% and in particular "mit "R FLC

n 1
The proof is then concluded by showing 1) %- z Si n” f Q(u)J(u)du,
- ’ 0

i=1

n 1
and {1i) %’ z Si n” o2 + ( [ Q(u)J(u)du)2, both convergences
i=1 0

being with probability one. Proceeding with the first part,




1 2 ) R 1 ) R S T N 5 IR |

n 1Elsi,n " ;'1EIJ[n + l]xi,n - ;.jflJ [n +1 [n+1 - n] xj,n
L3l - - genlk, L
ni-lnj-l nnji n+1)n+l jz1) j.n’

1
The first term converges to f Q(u)J(u)du with probability
0

one by Theorem 4, example 1 of Wellner (1977a),

D NS Ry 5 I O
The second term is - jflJ [n + 1] ] xj,n} which

converges to 0 with probability one by the same result (since

n

i zJ'—J—]—J—x

B, (B +1)jn+1§,n
1

J Q(uw)uJ' (u)du with probability ome)., Lastly,
0

converges to

n n
|l T 1 L (J'(n

o g _.1_] [_.1__ ]
m =1 n =1 ) - J [ ) I xj’nl

nji n+l)’ |n+l
b+
:|x, |

j-l j’n

< sup|J'(n a

370 -6

n+l

nji

which converges to zero with probability one using the uniform
continuity of J' and the first moment assumption on F. For

the second part,
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1 R i 1n|J_
it ot e sk,

P S ISANSE 2
. jfl(J ("nji) -J [n+1])[ - 1 < 1)]Xj'nl
- l : __i ] 1 n 1 ] 3 {j 2
n 151[J[n+1‘ X "n jflJ [EiT e R G B 1)} 35 al)

PR 0 N R |
-2 1 [J‘ ]xi’n--jflJ [n+1]{BiT' I(jii)}x L

15
"y El(J ("nji) - J'[;,jq])(;;k -I(3 < 1)]xj.n

n
1 £ (' in 4

NPT S N R PR £
Ta 1-11 P LCJ:*']“J,nI

“ At +‘A3n )

The third term, A3n’ is less than or equal to (in absolute

value)

Ll - rf)) z 1z 2

vhich converges with probability one to zero via the strong

law of large numbers and the continuity condition on J'. The




e

second térm, A2n’ is disposed of in similar fashion. The

first ternm, Aln’ requires a more extended analysis.

1 ° 1 1 210 ° 4 2
An=32 151"2 [nT-l']Xifn *a ifl[H jflJ {Ei'f]{nﬂ -G < i)}x:l.n]

2. 2 i ) R
AL L a5 EAICARELER

1
Bln - f Q2(u)J2(u)du with probability one by Wellner's Theorem 4.
0 .

By & similar argument and rearrangement cf torms,
1 2 1 1
B, +~ ([ Qu)J'(Wudu)® - 2 [ uI'(u)Q(u)du+ [ J'(u)(1-u)Q(u)du
2n 0 o 0 '
1 u 2
+ [ (f QW) (v)dv)“du
0 O

and

1 1
By, * 2 [ Q) I(w)du + [ Q(u)I'(w)udu
" 0 0

1l u
-2 fQ(u)J(u)[ / Q(v)J'(v)dv}du ,
0 0

eSS P muns. .~

-

-
-
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both convergences holding with probability one. The result

then follows by integrating the expression for g2 given by (2.1)
by parts and observing that the quantity to which sp2 converges
with probability one is indeed 02. (Note that the appeals to
Wellner's result are actually to a slight modification of it
allowing random Jn which satisfy the boundedness and convergence

conditions with probability ome.)

Ezample 1: The sample mean, for which J(u) = 1, clearly

satisfies the conditions of Theorem 1 (but not the trimming

conditions of Theorem 2) if l‘:l‘.l}(lzl3 <o Infact, S =S

n
n -

T (X, - X)? .

{n this case, and s 2 = iZ% . Lo2 ifE X[ <=

» and S, n-1 % F‘ '

Theorem 3 requires EFIXI2+€ < = for some € > 0. Thus, the
usual strong law for the sample variance '"just fails" to

be a corollary of Theorem 3.

Ezample 2: While the ordinary trimmed means do not satisfy

the score conditions of Theorems 1 and 2, a smoothed version
causing J to return to zero in such a way that it is differ-
entiable with J' obeying a Holder condition with a > 23 would

2
satisfy those conditions, We assume that the modified score

is also zero om C(e).
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Example 3: Gini's mean difference (J(u) = u - %) and the
optimal score for location estimation for a logistic population
(J(u) = 6u(l - u)) clearly satisfy the conditions of Theorem 1
Lf E(X) < « and those of Theorem 3 if EIXI2+e < =, but violate
the trimming conditions of Theorem 2.

In most instances, Theorems 2 or 3 will be of primary
interest, providing methods for the construction of approximaté
confidence intervals based upon L-statistics (and one-to-one
functions thereof). The bias of an L-statistic will often be
small (but see Section 3 in this regard), and hence §n will
be of limited practical use for the purposes of estimation
with reduced bias, However, the end goal of an analysis may
be to estimate or construct approximate tests or confidence
intervals for z(So). For estimation, g(Sn) may suffer from

severe bias if g is highly non-linear near S° {recall that

8"(8 )
EP[‘(sn)] = 3(50) + + VatF(Sn) ). Hence jackknifing

g(sn) would be of interest in such cases for reduction of bias.
If g is non-monotone, confidence intervals for g(Sn) obtained by
finding a confidence interval for So using /h(sn - So)/sp as

an approximately standard normal pivotal quantity and taking

the image of such an interval under g may well result in

longer intervals than would be obtained by pivoting about g(Sn).

A ETPETP T
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Thus, it seems to be of independent interest to study the

behavior of g(Sn) under jackknifing. The following theorem
parallels Theorem 1, establishing that g(Sn) and its jackknife

have the same limiting distribution.

Theorem 4: Let X Rys weey X be a random sample of size
n from a distribution F with E[|X|V3] < ®, Let J' obey a

Holder condition with a >‘%. If g is a function with a bounded

second derivative in a neighborhood of So, and g(Sn) =

n
T g(Sﬁfi) , the jackknife of g(Sn), then

i=]

n-1
n

ng(sn) -

4

¢h(z(sn) - ;(Sn)) — 0 with probability one.

Proof:

S sy =/ala=D) 7 1) _
Ja(g(s ) - g(s))) =75 0= RRCICRICAEEER

_1; " (1) - 2
+5 8"(6, )(S 1 - 5)°)

BV S
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) (2.5)
n- ' -
-3 (sn)v’n(sn -s)
n-1 n " (i)
+ 5= iEl(z; (g, )21 - 5%,

(1)

a-1 ° To justify this expansionm,

where £, 1is between S_ and S
in n

we need to prove

(1)

sup lsn—l

- S I <+ 0 with probability one.
1<i<n n

Now,
i-1 j S
g sV _g . L4y 1,0 2 )
n-1 n jfl n-1 (n) n J[n + IJJ xj,n
n 1 [i-1 1
A R

i N | 3 4 ) 14
-z[n-l{J[n+1]+J[n+1Jn(n+l)
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: 1 i) i (1)
- jfl{ n(n - 1) J[n 1) @+ D@ - D7 [n + 1
it
h| '
+ a(n + 1)(n - 1) “ (nnj) - T [E—i-f } xj,n
1 i
T a J[n + l] xi,n ‘
So
sup s -5 | < 1 x|+ ew lalclx, J+Ix D)
l<i<n 7 BT e ? 0<us<l 1,n

with M determined by the bounds on J and J'. Finally, this

expression converges to zero with probability one by the strong

law of large numbers and the fact that max(|X, |,|X [)/a=+0
1l,n n,n

with probability one if _EF|x| < =,
The first term in (2.5) converges to zero with probability one by

Theorem 1. The second term, denoted by Rn. can be bounded as follows,

n-1

LN 2 8"(51n)(s( EERL L T

(1)

z(Sn 1

-s5)2,
i=1 n

where [g"(a)| < L for a in some neighborhood of S_, for n

sufficiently large.

’Mmmm - -
- .- © e p— - - -




n n
Rl < HB=d sz B x| |

n' — '2/n 1=1 j-lnz j,n
2
i '
|3 [m]”xi,n'}
+

n

< L(n -1 g( 2 )2
= 2/n {n3 jfllx ,nl

M sup |J(w)|
tel fn ! 12\ .
* : x - S t+h . g e
nd lj.l' j,n'J j G with probability une

by the moment condition on F. Hence, the theorem is established.

Naturally, the moment condition may be omitted if J trims.

The analogous result on a consistent variance estimator follows.

Theorem 5: Let xl, ooy Xn be a random sample of size n from

a distribution F obeying the conditions of Theorem 2. Let J

satisfy the conditions of Theorem 2 and g have a bounded second

A L T SR I
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derivative in a neighborhood of So. If

2w (e (g - g(s )2
sp(g) 1=1 g n-l g n ’ (2-6)

2 P, oo 2,42 2
then SP(S) — (g (So)) g%, with o< given by (2.1).

Proof: The proof proceeds by second-order Taylor expansion
of the g(Sif;) about Sn, and then follows the method of
Theorenm 2.
It should be noted that Theorem 2 (1) is (is not) a special
case of Theorem 5 (4) with g(+) the identity, due to the

identical (additional) conditions imposed on £ and J in tne

latter theorem.

If the conditions for both Theorems 2 and 4 are satisfied,
asimptotically pivotal quantities for the construction of
confidence intervais for g(So) include

/h(g(Sn) - 8(s )

Zln -

p(8)

and
/n(g(Sn) - 8(s )

A = . .
8 (Sn)sp

2n
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If conditions for Theorems 1l and 3 hold, g(Sn) could be
replaced by (S ) and g'(S_) byg'(S_)(or even g'(S ) if g has
a bounded third derivative in a neighborhood of So). The
question naturally arises as to which choices would be best
in moderate-size sample applications of the above results.
The issue of what quantity to jackknife, that is, whether to

use

/h(sn -S) . /h(g(sn) - 8(5)))
sp SP (g)

has not been addressed in a systematic fashion in the literature.
However, the common suggestions of Miller (1974), p.l2) and

Efron (1973, p.192C) that thc function ¢z be jackkrifed should

be variance stabilized are reasonable, for example tantflr does
Jackknife more satisfactorily than r, the ordinary sample correlation
coefficient. Using this advice, when estimating a function g

of a location parameter So' the location parameter estimate Sn should
itself be jackknifed to produce a variance estimator. In other words,
Zzn is recommended.

3. TRIAL BY NUMBERS

While the above results give a large-sample justification
for use of the jackknife method for the creation of approximate

confidence intervals, they leave unaddressed questions
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regarding-appropriateness of the technique in small-sample

situations. Accordingly, a modest Monte Carlo study is in

order both 1) to relate the large-sample theory to samples of

- a size likely to be encountered in practice, and 1i) to

explore the behavior of the jackknife for L-statistics whose
score functions violate one or more of the regularity conditions
of Theorems 1-4. All computations were performed on the
AMDAHL 470 V/6 at Texas A&M University.

Only location parameter estimation is considered, that is
J(u) > 0 for 0 < u< 1 and oflJ(u)du = 1. The distributions

considered are 1) N(5,1), a normal with mean 5 and variance

one, 1i) a logistic with mean 5 and scale parameter 1, with

F(x) = [1 + e-(x-S)]-l . - < X < @

and 1ii) wu(4,6), a uniform distribution on the interval
(4,6). Five hundred random samples of sizes 5, 10, 20 and 40
from.each of the above three distributions were examined. The

score functions considered are
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CUI () =0 0 <uc< .05
=.23.53 (u - .05) .05 < u< .l0
= 1.1765 .10 < u < .90
= 23.53 (.95 - u) .90 < u < .95
=0 : 95 <uc<l,

a "smoothly" trimmed mean designed to obey the trimming
conditions of the theorems but to fail to be differentiable

at some points in (0,1];

Jy(u) = bu 0 <uc<.5
= 4(1 - v) ' .5 <uc<l.0,
ﬁ a "triangular" weight function neither trimming nor being

everywhere differentiable; and

Jy(u) = 6u(l - v) 0 <uc<l,

a score function meeting all differentiability requirements
but failing to trim.
Unfortunately, even witi the above three symmetric score

functions which integrate to one and symmetric parents,

biases can result due to the fact that
) 1 L B .
I JK[—_n . 1] # 1. Table 1 gives values of = J’K[n = 1]
=1 i=1
B2 A a0t e,
A .
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for n = 19, 20, 39, and 40 and K= 1, 2, 3. Note that a value

of 1 corresponds to no bias.
(TABLE 1 ABOUT HERE)

In fact, often such biases will die out at the rate of 0(1/n2)

n
(obtained by viewing % )X J[n i 1] as an application of the trape-
i=1 1

zoidal rule in approximating the integral f J(u)du ~ if J"
is bounded and continuous the error is 0(13n2)). Hence, the
ordinary jackknife would be of little or no use in dealing
with these biases. Also, a practitioner using L-statistics

would doubtlessly use the modified L~statistic

n i
z J[n + 1] xi,n

i=1
n
i
1flJ[n + 1]

S * =
n

to guarantee unbiasedness. All of Theorems 1-5 continue to

hold for these modified Sn* if they hold for Sn, so long as

n
N 1lim n3/2(1 -1 T J[—j-'—]) = 0. Based upon the 500 samples
n n+1l
nee i=1

for each sample size and distribution combination the

following are estimated:




1. Bias Factors for L~Statistics
a 3 3, 3,
19 1.053 1.053 1.050 ‘
[ 20 1.048 1.048 1.048 :
39 1.026 1.026 1.026
40 1.024 1.024 1.024
i
e e e Iy s e




a) Variance of Sn*

b) variance of gn*’ the jackknife of Sn*

c) Mean of spzln, the jackknife variance estimator

d) Mean of sp//h, the jackknife standard deviation
estimator

e-f) Percent coverages of approximate 100(1 - a)Z
confidence intervals for oflq(u)J(u)du, obtained as

S*+t s //n , where t is the
T 1-Fm- P 1-% ,n-1

2

100(1 - %) percent point of a t-distribution with

n - 1 degrees of freedom, for e) a = .10, and

£f) a = .05.
and g-h) Percent coverages for confidence intervals identical

to these above, but centered on §n*. for g) a = .10,

and h) o = .05,
Tables 2-5 present the fesults. It may be seen, even for
samples of size 5, that the approximate confidence intervals
maintain actual confidence coefficients close to the nominal
90 and 95 percent levels., Typically, the worst cases of
undercoverage seem to occur for, curiously enough, the uniform

parent. Intervals centered on Sn* seem slightly better

in this regard than those centered on Sn* s although the
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observed differences are of the same order as the standard

errors of the empirical confidence coefficients. This may

be related to the typically slightly larger'standard error

of §n*. Consistent with the result of Efron and Stein (1979),
the jackknife variance estimator appears to be typically
positively biased as an estimator of the variance of Sn*.

For 28 of the 36 combinations of sample size, score, and

parent population, the estimated mean of the jackknife vari-
ance estimator was greater than or equal to the estimated
variance of sn*. Out of the 36 combinations, En* had a larger
estimated variance than Sn* 27 times, with 3 ties (to 4

deeimal placee). However, the increase was tvnically small
relative to the size of the estimates themselves. Interestingly,
the estimated bias of sp//h as an estimate of the standard
error of Sn* is small, perhaps indicating that while the
variance estimate may suffer from a positive bias, the standard
error estimate is relatively better off. (Parenthetically,

if sp//h were exactly unbiased for (Var(sn*))y&, then spzln

would have a bias of order 1/n2, assuming Var(sn*) = 0(1/n).)

4. APPLICATIONS

The large-sample results of Section 2, bolstered by the

favorable Monte Carlo results in Section 3, provide a metho-
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dology for robust inference in linear models, in particular for
completely randomized designs with multiple observations per
treatment., We consider the model

Yij =+ ui + eij »

i=1,2, ..., ¢t
=12, ..., n

1 2
vhere @, represents the "effect" of the ith treatment. Note
that we do not rule out a factorial structure for the t
treatments. If, instead of the usual assumptions that the

eij are normally and independently distributed with mean 0 and

common variance, we merely assume that the g,, are independently

13
and identically distributed, symmetrically about 0, we can

pursue an L-statistic approach to analysis of variance
(the symmetry assumption is merely convenient - not necessary).

If we assume min(nl, Nyy ooy nt) + ® and min(nl, Dy ooy nt)/

t
gt
meeting the conditions of the appropriate theorems in Section 2,

+a >0, then for a symmetric score fuaction J(-)

we denote

a

i
e a D J[n—'h]xj n
Pi ju1 L "y




and 312 the corresponding variance estimate, where Xj n is the
b §

jth order statistic among those receiving treatment i. We then

pool our variance estimates by

t
- 2
. 151 (n; - s,
02 = : R
t
I (n, -1)
je1 *

mimicking ordinary analysis of variance. Then, an approximate

n n
test for a contrast I C.a, ( L C, = 0) is provided by rejecting
i1 i
i=1 i=l
n .
the null hypothosis (Z C o = Q) if and anlv {f
i=1 i7i

with zl-c/Z the 1 - % quantile for the standard normal. An
obvious modification in the critical point would permit
Scheffe-type procedures. Similarly, "robust" multiple
comparisons could be done, Robustness of these procedures would,
of course, depend upon the robustness and convergence rates

of the associated L-statistic for location - a well-studied

topic. Note that the "sums of squares" for this type of analysis
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can be simply computed by separately computing Si and si2 for

each treatment, and then inputting these into any standard

analysis of variance package which will accept treatment means

and variances as input.

5. SUMMARY

The ordinary jackknife is acomputationally simple means
for the construction of large-sample confidence intervals
for functionals of the form S = oflq(u)J(u)du. Simulation
results indicate that the technique is effective for small

samples.
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